If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=161
We move all terms to the left:
a^2-(161)=0
a = 1; b = 0; c = -161;
Δ = b2-4ac
Δ = 02-4·1·(-161)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*1}=\frac{0-2\sqrt{161}}{2} =-\frac{2\sqrt{161}}{2} =-\sqrt{161} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*1}=\frac{0+2\sqrt{161}}{2} =\frac{2\sqrt{161}}{2} =\sqrt{161} $
| 2x-2x=-10-30 | | 6(x+7)=2+1x | | 3/4o=21/2 | | 5(4-2x7=-14 | | 2(n-4)+3(n+5)=2 | | 4(4w+10)/5=-3 | | 5(4-2x=-14 | | 6(x+7)=2+1 | | A^2-15a+52=-4 | | 3g=4/5=4g-8/4 | | 2(n-4)+3(n+5)=-2 | | -4(a-1)+3(-2a+2)=3a-4+a | | 17h–12h=15 | | 2x-40=x-35 | | 12=10p-7p | | Y+15=4y | | 2/5h=6 | | q=20*X^0.5 | | q=20*L | | 3x-7=10x+11 | | -4(a-1)+3(-2a+2)=3a-4+5 | | -7(w+3)=49 | | q=20*L^0.5 | | 36=3x-55 | | 6(u+2)=3u+24 | | -9=e/14 | | 29-3x=20+6x | | -0.6x-0.35x+0.25x=-56 | | 12x+1/3=5x-1 | | y-17=-13 | | C=38.95+0.25x | | 12=s–-6 |